Lecture 2 - Sep. 13
Overview of Compilation
Components of a Compiler:

Frontend, Optimizer, Backend
Introducing Scanner
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Compiler: Typical Infrastructure (2)
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Q. What does thie behaviour of the target program depend upon?

TmYAk Atou m‘e% B/'DOJPA n IR
7., ul- 07&4("{(’0( K Al‘wm"(’.jj {’/4000‘00’( 7 0}7\"}'&477?0( 7K



Infrastructure

Example Compiler 1
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Compiler Infrastructure: Scanner, Parser, Optimizer

Lexical Analysis yntactic Analysis Semantic Analysis

Source Program

(seq. of characters) Scanner : seq. of tokens Parser Target Program
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Analogy: Compare Compilation to Essay Writing

Introduction

c ies in today’s ion society are not merely an

institutional system, instead, they are a system of material objects designed by those who — Wo l d s

intend to exercise the social requirements and their hegemonic purposes: command,

control, and exploitation. In this essay, one main thesis — contemporary technologies are

not neutral — will be revealed by first looking at how Feenberg’s notions of dialectical -t s e n fe n c e S
technological rationality and technical code provide a generic template for explaining '
how technologies can combine the social and political requirements under a particular

capitalist social context, and then examining two different standings on arguing the “un- Q

neutrality” of technologies: While Margolis and Resnick argue for the ethical ideas, m e a n ' n g
‘Winner, Goodman, McDermott, and Robins and Webster argue against the blamable

messages embedded within technologies.

a
Summaries of Arguments from Sources

In his work, Cressman (2004) describes how Feenberg develops his notions of

dialectical technological rationality and his concept of the technical code based on

Marx’s i i and Marcuse’s ical rationality. Feenberg’s
technical code can be defined as the general rule of integrating social requirements and

the technical advancement into a single technological artifact, which frequently binds

technological applications to hegemonic purposes (Cressman 2004). Based on Marc’s
notion of “design critique” of technology, Feenberg claims that the contemporary social { M .
system of capitalism has shaped the sort of technology we are using and even guides ( 5 fu

what we will have in the future. A capitalist system mainly requires the control over the

majority of the working class, and hence division of the labour force is implemented, and
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Compiler Infrastructure: AST-to-AST Optimizer (1)
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across 1 |..| n is 1
loop / -~
read d
@:= a *5:2*@* cl’« d
end AST of input program:
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Compiler Infrastructure: AST-to-AST Optimizer (2)

B 3= cee § &8 B sue £ 8 BE s
temp|:= 2 » b x c {MuZR(
across i |..| n is 1 1> 67
loop
read d
a := a x(temp/x d
and @ AST of output program:




Compiler Infrastructure: AST-to-AST Optimizer (3)

Q. How should the various artifacts be connected?

B 2 sie §f @ e ¥ B S s b= ...; c:i= ... a:=..
*

14
across i |..| n is 1 temp := 2 b ¢
| i

*
loop 7 O across i |..| n is 1
read d ) loop
- read d .

a :=a *« 2 « b x c « d
end a := a x temp x d
end
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