Lecture 2 - Sep. 13
Overview of Compilation
Components of a Compiler:

Frontend, Optimizer, Backend
Introducing Scanner

- Survey on Programming Test Time
- Office Hours

i iler? 1</
What is a Compiler Wd

semantic domaii

/ / \
/ Input/Source [-, B Output/Target \‘
/ Language ‘~\\encoded encoded .- Language

LJ

< into

Input/Source ! passed to) generates /| Output/Target
Program Compiler X Program
. —
V Y

15

e maae==—"

1
I
|
I
|
|
|
|
\

\

. . Joua LY
Compiler: Typical Infrastructure (1 G

Source
Program

> Front End ~| Back End

Compiler

¢l olags |
Concrete Syntax Ivs. Abstract Syntax ij‘c é’{g L |_S
oo Sutox [i 3 éé At;aihfr
Q. How many Iv s are necessary to build a number of compiler? pad
-¢(Jdava/to-C v
G T g
- ava-fo- IIZZ' maCh Mp = t_o _}‘/ﬁ

- CH#-to-

Compiler: Typical Infrastructure (2)

e J U

A W,aytwi Seac
Source (| T Taraet
‘ Progra ~| Front End @) Optimizer ®4 Back End }—C\ e iam= ’
grary il [ereg
3 Compiler

Q. What does thie behaviour of the target program depend upon?

TmYAk Atou m‘e% B/'DOJPA n IR
7., ul- 07&4("{(’0(K Al‘wm"(’.jj {’/4000‘00’(7 0}7\"}'&477?0(7K

Infrastructure

Example Compiler 1

A

A

Back End

uoneoo||y bay

A

A

bulinpaysgs jsuj

A

A

uono8|8s Jsu|

[,
o)
N
S
Q
@)

u uoneziwndo

c A

A

Z uoneziwndo

A

A

| uoneziwndo

Front End

uoneloqe|3

Infrastructure

’QFA\:SP &R

Lless M&f) werts the
_. wam() <3S 1‘2(‘1‘/@//
3 T/’«tf/l(Hella A)a/M) g va pre
3 ‘jj/’;";:@w y
mM:e ;ZM/ é
?“(&) r‘f.v»‘t
: L

Compiler Infrastructure: Scanner, Parser, Optimizer

Lexical Analysis yntactic Analysis Semantic Analysis

Source Program

(seq. of characters) Scanner : seq. of tokens Parser Target Program

1
|
: pretty printed
] >
|
|

Analogy: Compare Compilation to Essay Writing

Introduction

c ies in today’s ion society are not merely an

institutional system, instead, they are a system of material objects designed by those who — Wo l d s

intend to exercise the social requirements and their hegemonic purposes: command,

control, and exploitation. In this essay, one main thesis — contemporary technologies are

not neutral — will be revealed by first looking at how Feenberg’s notions of dialectical -t s e n fe n c e S
technological rationality and technical code provide a generic template for explaining '
how technologies can combine the social and political requirements under a particular

capitalist social context, and then examining two different standings on arguing the “un- Q

neutrality” of technologies: While Margolis and Resnick argue for the ethical ideas, m e a n ' n g
‘Winner, Goodman, McDermott, and Robins and Webster argue against the blamable

messages embedded within technologies.

a
Summaries of Arguments from Sources

In his work, Cressman (2004) describes how Feenberg develops his notions of

dialectical technological rationality and his concept of the technical code based on

Marx’s i i and Marcuse’s ical rationality. Feenberg’s
technical code can be defined as the general rule of integrating social requirements and

the technical advancement into a single technological artifact, which frequently binds

technological applications to hegemonic purposes (Cressman 2004). Based on Marc’s
notion of “design critique” of technology, Feenberg claims that the contemporary social { M .
system of capitalism has shaped the sort of technology we are using and even guides (5 fu

what we will have in the future. A capitalist system mainly requires the control over the

majority of the working class, and hence division of the labour force is implemented, and

I ’c G/ M%W i prt L) 5 T
Al(;\ g""ouﬂﬁ‘t 55 7 Phse 67’./04 (fo e £P€)

UAJQ%@ whle (twe) a1 =3 58

. qu.,o é@m
h"(@ (W?)i wt T=x33 aat (=457

/NIA A
ﬁ)&f{ / W

Compiler Infrastructure: AST-to-AST Optimizer (1)

QD = /3 (€)= v §J A 2= s
across 1 |..| n is 1
loop / -~
read d
@:= a *5:2*@* cl’« d
end AST of input program:

SeqComp
%’oi{iﬂ A7SS\|QQ Assign Loop
Var Expr Var Expr Var Expr Ranmomﬂ
Expr Expr Expr Assign
Var Expr

Compiler Infrastructure: AST-to-AST Optimizer (2)

B 3= cee § &8 B sue £ 8 BE s
temp|:= 2 » b x c {MuZR(
across i |..| n is 1 1> 67
loop
read d
a := a x(temp/x d
and @ AST of output program:

Compiler Infrastructure: AST-to-AST Optimizer (3)

Q. How should the various artifacts be connected?

B 2 sie §f @ e ¥ B S s b= ...; c:i= ... a:=..
*

14
across i |..| n is 1 temp := 2 b ¢
| i

*
loop 7 O across i |..| n is 1
read d) loop
- read d .

a :=a *« 2 « b x c « d
end a := a x temp x d
end

[ke

/ > \ - //OGH<M \

NI T AN AT

[EERARIANEINVAN TITTTT IO, T X

VAR VAR HE:D P \ VAR VAR VAR
T T T VAR VAR EXP T T T V:R / \
' o t t ‘ co
a a*2*b*c* d a

—>><
T

